ALGEBRA I
Time Limit: 10 minutes
The word "compute" calls for an exact answer in simplest form.
3-1. Factor over the integers: $2 x^{2}-x-15$
3-2. Compute the sum of the arithmetic series $5+8+11+\cdots+2015$.

Part II.
GEOMETRY
Time Limit: 10 minutes
The word "compute" calls for an exact answer in simplest form.
3-3. Under a reflection in a line, $(2,6)$ has the image $(6,0)$. The equation of the line is $y=m x+b$. Compute the ordered pair (m, b).

3-4. In parallelogram $G R A M$, the diagonals cross at P, the angle bisector of $\angle R G M$ intersects $\overline{M A}$ at S, and the perpendicular from M to $\overline{G S}$ intersects $\overline{G S}$ at U. If $G M=11$ and $G R=17$, compute $U P$.

Part III. \quad ALGEBRA II / ADVANCED TOPICS
The word "compute" calls for an exact answer in simplest form.
3-5. For various integers k, the equation $2 x^{2}-5 x+k=0$ has two distinct real roots. Compute the greatest such integer k.

3-6. Jimmy chooses four letters at random from the letters in the word ADDITION. Compute the number of distinct ways in which he may do this. Note: the set $\{A, D, D, I\}$ is not distinct from the set $\{I, D, D, A\}$.

R-1. In a triangle of perimeter 2016, the three sides have measures $x, 2 x-672$, and $3 x-1344$. Compute the degree measure of the greatest angle in the triangle.

R-2. Let N be the number you will receive. In parallelogram $S C A M$, angles S and C differ by N°. If angle C is obtuse, compute the number of degrees in the measure of angle A.

R-3. Let N be the number you will receive. Jimmy, Timmy, and Kimmy are playing a game. Their total score is N points. Timmy has the average score of the three players. Kimmy beat Jimmy by 10 points. Compute Jimmy's score.

R-4. Let N be the number you will receive. In a room with N people, every child shakes hands with every adult once. A total of 54 handshakes take place. There are more children than adults in the room. Compute the number of children.

R-5. Let N be the number you will receive. Old Mother Hubbard had N children, and the difference between the ages of any two consecutive children is 2 years. The sum of their ages is 234 years. How old is the oldest child?

